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We study the spectral statistics of the fluctuations of a passive scalar convected by 
a two-dimensional homogeneous isotropic turbulence using the eddy-damped 
quasinormal Markovian (EDQNM) theory, and - in certain cases - the near- 
equivalent test-field model (TFM). For zero correlation between scalar and vorticity 
fields it is known that these closures lead to inertial-convective ranges following 
respectively a k-' law in the enstrophy-cascade range and a k-t law in the 
inverse-energy-cascade range. We show that the scalar cascade in the latter range 
is direct, and is characterized by a positive eddy diffusivity. For forced flows in which 
correlation between vorticity and scalar forcing is prescribed, the k-! range is replaced 
by a ki range if the correlation is perfect, and for imperfect correlation we describe 
an analysis that bridges the ranges ki, k-l .  

We also examine the infrared (k+O) behaviour of the energy and scalar spectra. 
Statistically steady injection of energy and scalar variance at a wavenumber k, 
produces an energy spectrum E(k)  - kS, and a scalar spectrum E,(k) - k. In the 
unforced case, for any initial conditions, the energy spectrum develops a k3 range for 
k less than the wavenumber characteristic of the energy-containing eddies and a k-3 
range for larger k. This allows a demonstration - via closure - that this energy-bearing 
wavenumber decreases as t-' and the enstrophy as t-2 (modulo logarithmic correc- 
tions), as predicted by Batchelor (1969). Finally we show the scalar-fluctuation 
variance decays as the enstrophy, if the enstrophy spectrum is considered as a passive 
scalar. If not, the decay exponent is proportional to the ratio of the characteristic 
eddy-damping rates of the velocity and scalar third-order moments. 

1. Introduction 
This paper studies the variance of the fluctuations of a passive scalar in two- 

dimensional isotropic homogeneous turbulence, paralleling the analysis made by 
Oboukhov (1949), Corrsin (1951), Batchelor (1959) and Batchelor, Howells & 
Townsend (1959) in the three-dimensional case. We present phenomenological 
arguments and analytical results obtained from non-local expansions of the transfer 
functions (involving elongated wavenumber triads) using the EDQNM (see e.g. 
Pouquet et al. 1975). We study the infrared (low-k) behaviour of the energy and scalar 
spectra and in addition the decay with time of the variance of the fluctuations. 

We point out here that our present concern is strictly the study of a passive scalar 
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such as the temperature field in two-dimensional Navier-Stokes equations. This is 
not the same problem as the temperature field in a quasigeostrophic system of 
equations (Hoyer & Sadourny 1982) - a system whose dynamics are closely similar 
to two-dimensional turbulence. For the latter, the temperature is not a passive 
scalar, but diagnostically related to the vorticity field through the 'omega ' equation 
(for a discussion of the latter point see e.g. Charney 1971). 

The paper is organized into six sections. Sections 2 recalls the main results 
concerning the dynamics of two-dimensional turbulence as i t  devolves from the 
EDQNM theory. Section 3 presents results concerning the k-l inertial-convective and 
viscous-convective range in the enstrophy-cascade range. In $4 we show that the 
scalar flux in the inverse cascade is positive, implying a k-i direct inertial-convective 
cascade for the scalar. In $ 5  we consider the case of freely decaying energy and scalar 
variance, indicating how the present analysis supports and generalizes the earlier 
concepts of Batchelor (1969). Finally, in $6 we describe effects associated with 
correlation between the scalar and the vorticity field. We examine the case in which 
this correlation is injected into the statistically steady (forced) flow, and the case of 
decaying correlation in stationary flow, obtaining in the latter case a quantitative 
estimate of the rapidity of the decay of correlation. 

2. Dynamics of two-dimensional turbulence 
We consider two-dimensional turbulence bearing a passive scalar 6.  The equations 

of motion for the vorticity field 6 and 6 may be written as 

(2.la, b )  

where u is the viscosity and K the molecular diffusivity. The velocity u satisfies 
u = ( -$u,  $-,), V2$ = 6. For inviscid flows (2.1) has four quadratic constants of 
motion: (u2),  (E2)> ,  (ea) and (66).  Here the angular brackets denote a volume 
average over a large periodic box. We first discuss results for the case 
c = ([(x) e(x')) = 0, with c 4 0 presented in $6. 

Homogeneity and isotropy in the (2, y)-plane is assumed throughout this paper. 
The second-order statistics are then wholly characterized by the kinetic energy E(k, t )  
and the scalar-spectrum variance E,(k, t ) ,  defined so that 

;(I(') = som dk E(k, t )  = QV2, 

r m  
!j(02) = dkE,(k, t ) .  

0 

Here V is the r.m.s. velocity field and (e2) the volume-averaged scalar variance. 
The enstrophy, defined by 

m 

D(t)  = !j(c2) = dk k2E(k, t ) ,  
0 

is an inviscid constant of motion, as implied by the conservation of [ along particle 
trajectories (no stretching of vortex filaments). As a result, enstrophy cascades toward 
small scales, and energy towards large (Fjortoft 1953). 

Let E and ?,J be rates of injection of energy and enstrophy at a certain wavenumber 
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k,, by some external force. Then for stationary flow Kraichnan (1967) and Leith (1968) 
predict a direct enstrophy cascade for which 

E ( k )  - 7,1:k-~ ( k ,  < k < k,), (2.5) 

with kD = (7 ,1 /v3) i9  (2.6) 

E ( k )  - d k 2  (k  < k I ) .  (2.7) 

and an inverse energy cascade to large scales for which 

These cascades may be shown to be stationary solutions of the spectral-closure 
equations derived from the EDQNM or the near-equivalent test-field model (TFM) 
(Kraichnan 1971a,b). Pouquet et al. (1975) have further shown that-in the 
appropriate circumstances - time-dependent calculations also converge to these 
stationary spectra. It must be stressed, however, that only meagre evidence- 
experimental or theoretical - indicates this double cascade is really the dynamics of 
two-dimensional turbulence (see, however, the review paper of Kraichnan & Mont- 
gomery (1979), the earlier paper of Lilly (1969) and the more recent works of Brachet 
& Sulem (1984) and Sulem t Frisch (1984) for some evidence for these theoretical 
ideas). 

For freely evolving turbulence there is no inverse cascade. For this case Batchelor 
(1969) proposed a self-similar spectrum 

E(k ,  t )  = P t F ( k V t ) ,  (2.8) 

where F is as yet arbitrary (see also Rhines 1979). The integral scale k,' is then - Vt. 
As noted by Tatsumi & Yanase (1981), (2.8) is then not valid in the enstrophy- 
dissipation range. However, (2.8) gives a contribution to the total enstrophy 
equivalent to that contributed by the actual enstrophy range. The enstrophy is 
proportional to t-2,  since 

D(t) = dk V t k 2 F ( k V t )  = t-2 som daa2F(a). s 
The enstrophy-dissipation rate is then proportional to t-3,  and the energy spectrum 
in the enstrophy-cascade range is given by 

E ( k ,  t )  - t-2k-3. (2.9) 

Logarithmic corrections to the kP3 spectrum (Kraichnan 1971 a) are described later. 
Such terms are simply details needed to ensure convergence of integrals, and do not 
alter qualitative arguments made here. 

3. Scalar spectrum for k > k,  
The scalar spectrum for k > k, has been considered by Lesieur, Sommeria & 

Holloway (1981) and by Mirabel & Monin (1983); we shall here only briefly 
summarize certain results found there needed for future discussion. We assume a k-3 
energy spectrum extending from k,  to k,, with k ,  given by (2.6). For k % kD we 
assume that E ( k ,  t )  decreases rapidly. Let Ee(k) be forced at  ke and let k, be in the 
range k,  < k, < k,. Then, as described later, 

Ee(k) oc Xq-ik-' ( k  > he), 

where ,y is the dissipation rate of 8. 
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FIGURE 1. Characteristic ranges of the scalar spectrum, according to the relative values of the 
molecular viscosity and diffusivity. 

Equation (3.1) is valid as long as molecular diffusive effects may be neglected, and 
for any Prandtl number Pr = V / K .  Equation (3.1) implies that diffusive effects 
become important for k > P,, where 

k$ = ( T , I / K ~ ) ~ .  

As in three dimensions, it  is necessary to consider several different scalar spectral 
ranges, as summarized in figure 1. If Pr < 1 (implying k$ < k,) and k, < k < k$ 
viscous and diffusive effects are unimportant. The scalar spectrum is ‘inertial- 
convective’. For k& < k < k ,  the velocity field is still inertial, but the diffusion of 
the scalar is dominated by molecular effects. The scalar spectrum is ‘ inertial-diffusive ’. 
If V / K  > 1 (k ,  < Ice,) and k, < k < k,  the scalar spectrum is still ‘inertial-convective ’. 
For k,  < k < k& the scalar spectrum is ‘viscous-convective’. 

We now examine the inertial-convective and viscous-convective ranges in more 
detail. 

3.1. The inertial-convective range 
In the three-dimensional analysis of Obukhov (1949) and Corrsin (1951) the scalar 
spectrum is assumed to be proportional to the spectrum of the cascading quantity, 
i.e. the energy. If - by analogy - the cascading quantity is enstrophy, we may expect 

E,(k) - ~5 E(k)  k2, (3.3) 
T,I 

which is (3.1), on using (2 .5)  (also proposed by Mirabel8t Monin 1982). The spectrum 
(3.1) may be derived via two-point closure (see the Appendix for an account of these 
equations). We start with the expression for the enstrophy flux Z ( k )  through 
wavenumber k .  This is defined by 

a 
( g + 2 v k 2 )  (k2E) = -- Z ( k ) .  

ak (3.4) 

It may be shown (Kraichnan 1971b) from (A 1)-(A 4) of the Appendix that in the 
enstrophy cascade Z(k) is dominated by triad interactions ( k , p , q )  of the form 

q 4 p - k .  

Expansion with respect to the small parameter q / k  leads to 

Z ( k )  = -:k3 ~ akzk) jok dqq2E(q)7(k,  k, 0 ) .  (3.5) 

Here, T(k, k ,  0) is a triple moment relaxation time as given by (A 16) of the Appendix. 
(for a more complete discussion see Basdevant, Lesieur & Sadourny 1978). 
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For ( E( -k) O(k)) = 0, an application of the same diffusion expansion technique 
to the scalar gives for the scalar flux I&: 

roo 

with ( ; + 2 ~ k l )  Ee Te(k). 

From (A 1 ), after an appropriate ‘ diffusion ’ analysis, we find 

(3.6) 

where 7’ is defined by (A 18) of the Appendix. That (3.7) is formally nearly identical 
to (3.5) should not be surprising upon recalling the similarity of the E and O equations 
of motion (2.1 a,  b). A t  small scales both E and 8 are simply strained by the large scales; 
if the latter are statistically independent of small scales, variances of 6 and 8 behave 
similarly (see e.g. Kraichnan 1975). 

Equation (3.7) with (3.5) yields 
x A’ 
7 A  

Ee( k) = - - k2E( k). 

In (3.8) A and A‘ are constants that determine the triple-moment relaxation rates for 
([(z’) E(z) &)) and (O(z’) E(s) O(z)) (see (A 13) of the Appendix). These numbers are 
not determined by the closure used here (EDMQN). However, if the enstrophy is 
treated as a passive scalar then 

A’ = A. (3.9) 

3.2. The viscous-convective range 

For Pr > 1 and k& > k ,  (3.7) remains valid, if we replace the right-hand-side integral 
by 

We find, using (3.9) and assuming a constant scalar flux x, 

Ee(k) = 4Ax7-4(2~)4 k-l. (3.10) 

Thus in two dimensions the inertial-convective and viscous-convective ranges have 
the same spectral distribution, except that (3.10) has no logarithmic correction, in 
contrast with the inertial-convective range. Indeed, in (3.8) the logarithmic correction 
of the scalar spectrum is the same as the energy spectrum, as noted by Mirabel & 
Monin (1983). Figures 2 and 3 show schematically the energy and scalar spectra in 
the inertial-convective and viscous-convective ranges. It is not a priori certain that 
both k-’ ranges for Ee(k) will match at k,. 

4. The scalar spectrum in the inverse-energy-cascade range 
We now assume that k, (the scalar-injection wavenumber, or the wavenumber 

characteristic of the initial scalar fluctuations) lies in the k-g inverse energy cascade 
(ke < kI). Determining the behaviour of the scalar is not a priori obvious. On the one 
hand, we expect the growth of large eddies to entrain the scalar fluctuations toward 
progressively larger scales. Possibly this would lead to a k-8 inverse inertial- 
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FIGURE 2. Schematic energy and scalar spectra (at k > k,) for Prandtl number > 1.  The enstrophy 
is assumed to be injected at k, at a rate 1. The scalar is injected at k, > k, at a rate x. 

FIGURE 3. Schematic energy and scalar spectra (at k > k,) for Prandtl number < 1. 
The k-? inertial range was derived in Lesieur et a2. (1981). 

convective cascade. On the other hand, no dynamical constraint (such as the 
enstrophy conservation for the velocity) exists to force the large scales of the 
scalar field into an  inverse cascade (Schertzer & Lovejoy 1984; Holloway & 
Kristmannsson 1984). 

To provide insight into this issue we solve (A 2) numerically for F,(k) = S(k-k,) 
and E(k)  - k-1, with (B(k) E (  - k)) = 0. We pick k, a t  the beginning of the k 3  range 
of E(k).  Further details of the numerical calculation are given in the caption to 
figure 4. For small-k numerical stability we choose 

(4.1) 

Equation (4.1) assumes a Rayleigh friction to inhibit the development of a k-! range 
for E(k )  into the origin, a condition difficult to  manage numerically. 

Figure 4 shows the steady-state solution of (A 2) for the above forcing, and for a 
range of hyperconductivities as shown in the figure. We note an accurate k-i range 
extending from k = 3 to k = 50. The ‘bump’ in the spectrum beyond k = 80 actually 
represents a transition back to  an  inviscid E,(k) - k spectrum, prior to the scalar 
dissipation. The dissipation is actually negligible throughout this range. The inertial- 
range coefficient C,  (Ee = C,,(x/8) k-f) may be computed from this calculation, 
provided we know the equivalent C, for the velocity field. The latter has been 
computed by Kraichnan (1971b), utilizing the TFM, which is equivalent to our 

E(k)  = k3( 1 + k)-Y. 
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lo2 Y 

FIQURE 4. Steady-state scalar-energy spectrum Ee(k) for E ( k )  given by (4.1), and scalar forcing 
wavenumber ke = 1 .  E,(k) is dissipated by a hyperviscosity ~ ( k - k ~ ) ~ ,  for k > k,, k ,  = 150. The 
computational domain is 0 < k < 200. A sequence of decreasing K is shown ( K  = 0.004, 0.001, 
0.0005). 

present EDQNM model, provided we choose A x 0.4. For the scalar we must make 
some choice for (A', A"). Here we simply set these equal to A. This gives, 

C, = 0.750C$. (4.2) 

For C, Kraichnan (1971 b) finds C, = 6.69, which yields C, = 0.29. The relative 
smallness of this value is a consequence of the more efficient scalar cascade. 

In addition to the above numerical evidence for a k-! scalar forward-transfer range, 
we offer an analysis, via a model employed by Larcheveque & Lesieur (1981). There 
the problem of dispersion of pairs of particles (Lagrangian tracers) is studied in two 
and three dimensions. Batchelor (1952) and Roberts (1961) have shown this problem 
may be formulated as a particular case of the passive-scalar problem: for K = 0 the 
probability density $(r,  t )  that two tracers will be separated by a vector r is equal 
to the spacial correlation (O(x) O(x + r ) ) .  

Thus the EDQNM equation ((A 2) with c = 0) holds for the Fourier transform of 
$(r, t ) .  If we set A' = 0 we can, through an inverse Fourier transform, obtain an 
evolution equation for $(r , t ) .  In  two dimensions this equation is (Larcheveque & 
Lesieur 1981) 

where (4.4) 

here J1 is the Bessel function of order 1. These equations are the same as obtained 
through the abridged LHDIA; see Kraichnan (1966), who studied the equivalent 



84 M. Lesieur and J. Herring 

three-dimensional problem. The choice A’ = 0 may, at first, look questionable in the 
enstrophy-cascade range since - as we have seen in $3 - the k-’ inertial-convective 
range assumes - in principle - a non-zero value for A’. However, Larcheveque & 
Lesieur’s choice leads to 

and we may verify that (3.7) and (4.5) are equivalent in the inertial-convective range 
if we take A’ = 4A”. (The definition of the scalar relaxation parameter A”  is given by 
(A 18) of the Appendix.) Thus the k-’ range is still recovered. Returning to the inverse 
k-8 energy cascade, i t  is likely that the choice A‘ = 0 does not fundamentally alter 
the dynamics of diffusion. We have examined this point numerically in three 
dimensions (Herring et al. 1982), and the results support this comment. 

We may now translate the findings of Larcheveque & Lesieur (1981) in terms of 
the correlation $(r,t). To this end consider an indefinite k-8 range, in which a 
passive-scalar spectrum can evolve freely in time. The only constraint imposed on 
the scalar spectrum is that the corresponding correlation $(r,  t )  should satisfy the 
normalization condition 

dr$(r,t) = 1, (4.6) I 
which stems from the fact that $ = (O(x)O(x+r) )  is also a probability density 
distribution. Equation (4.6) implies that 

lim {y} = const, 
k-0 

where this constant is independent of time. This means that we restrict the small-k 
shape of the Ee(k) spectrum to be of the thermal-equilibrium form for the present 
analysis. The assumption of an inverse energy cascade also allows the calculation of 
Kll (r ,  t). With the aid of (4.6), we may show that (4.3) admits a similarity solution 
of the form 

$P, t )  = R-Y(r/R), (4.7) 
where the integral scale of the scalar field, defined by 

r m  
R2 = J drr2$(r, t ) ,  

0 

satisfies a generalized two-dimensional Richardson law 

- const x €iH. 1 dR2 
2 dt 

fT=--- (4.9) 

Here CT is the rate of dispersion of pairs of particles, as discussed by Batchelor (1952). 
Note that f~ is always positive, regardless of the direction of the cascades in Fourier 
space. There is no evident relation between u and scalar eddy-diffusion coefficient 
from initial spots as calculated for instance by Haidvogel & Keffer (1984). The 
non-dimensional function f in (4.7) is 

f (i) = const x exp [ - const x (;)‘I. (4.10) 

The structure function +(O,t)-$(r,t) may then be expanded for small r .  It 

(4.11) satisfies 
$ ( O ,  t )  -$(r ,  t )  = const x R-%. 
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We note from (4.7), (4.9) and (4.10) that 

so that (4.11) becomes 
#(O,  t)  -&r, t) = const x XE-M 

(4.12) 

(4.13) 

This is no more than a generalized Corrsin-Oboukhov law (Corrsin 1951 ; Oboukhov 
1949) in the two-dimensional inverse-cascade range: the scalar flux x given by (4.12) 
is positive and the scalar spectrum Ee(k) behaves as k 3  for k +a, implying a direct 
inertial-convective cascade toward small scales. 

5. Decay of passive-scalar fluctuations 
In this section we consider the problem of the decay of a passive scalar, initially 

injected at a wavenumber k,, in freely decaying two-dimensional turbulence. The 
energy spectrum has been studied by Batchelor (1969), Rhines (1979), Tatsumi & 
Yanase (1981) and Basdevant (1981), and Lesieur (1983). 

We first examine the energy spectrum. Batchelor (1969) assumed - arbitrarily - a 
self-similar behaviour of the type (2.8). In  fact, consideration of non-local transfers 
in the EDQNM allows us to predict completely the shape of the energy spectrum, 
the evolution of k,(t), and that of the enstrophy. The derivation proceeds as follows : 
we first assume an enstrophy cascade of the form 

E(k) = C7:k-3(1+21n(t))-t 

for k, < k < k,, where 7 is the enstrophy-dissipation rate and C is a constant. The 
derivation of (5.1) comes from setting Z(k) in (3.5) to be constant, and hence contains 
only non-local transfers in the EDQNM theory. It may be extended to the freely 
evolving case if we suppose that the enstrophy flux is constant and equal to 7 in the 
cascade. 

As klk,  + 0 we assume 
E(k) = C8(t) k8 (k < k,). (5.2) 

Equations (5.1) and (5.2) give a rough characterization of the k-dependence of E(k),  
useful to give order-of-magnitude effects. 

As k + 0 the energy transfer may be approximated by (Kraichnan 1976 ; Basdevant 
et al. 1978; Herring 1978) 

T(k) = k3 s,” 7(0,p,p) -dp-2(ve+v(k))k2E(k), P(P) 
P 

(5.3a) 

with 

The same analysis for Ee(k) yields 
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2-dimensional case 3-dimensional case 

-. 

k,(O kdO) k k,(4 W )  
FIQURE 5. Time evolution of initial spectra peaked at k,(O). Initially these decrease rapidly above 
k,(O), and are proportional to ka for k < k,(O). The three-dimensional case (Lesieur & Schertzer 1978) 
has s < 4, while s(0) = 1 for two dimensions. If the latter condition (for two dimensions) were to 
be continued for t > 0 the integral scale could not increase while conserving the energy exactly. 
Instead, however, s + 3  with more rapid approach at larger k. In the three-dimensional case, and 
for s > 4, the EDQNM predicts that s ( t )  +4 for increasing t .  

v, is the eddy viscosity, which is negative for problems with a lower cutoff 
wavenumber k, > 0, and for any spectrum decreasing at sufficiently large k faster 
than k- l .  Note that the eddy diffusivity implied by (5.4), 

I rco 

is always positive for any k,. The first term on the right-hand-side of (5.3) g’ ives a 
k3 spectrum at low k ,  at least for moderate times after t = 0. It then is tempting to 
argue by analogy t o  three dimensions that an initial spectrum for which E ( k )  + kS ,  
k+O, would be maintained (with dC/dt = 0) for s < 3. But this cannot be so here, 
because of the constraints imposed by the inviscid conservation of energy and 
enstrophy. Note first that  the contributions of (5.2) and (5.1) to the kinetic energy 
are of the same order - C, k:+’. Then time-independence of C, implies that k, is also 
fixed with time, in contradiction with Fjortoft’s (1953) result. The only way of 
resolving the contradiction is to  assume that in the neighbourhood of k,  ( k  5 k,) the 
transfer will be strong enough to produce a k3 spectrum that overshadows the k8 
spectrum. Figure 5 shows (TFM) numerical results illustrating this point. For 
comparison, the three-dimensional case studied by Lesieur & Schertzer (1978) is also 
shown. 

From this analysis we deduce that, whatever the initial spectrum is for low k, it 
will in time develop a k3 range for k 5 k,  and the initial ks shape is relegated to an 
insignificant zone near k = 0. Equation (5.2) must then be changed to  

E ( k )  = C3(t) k3 ( k  < k I ) .  

In  evaluating the total enstrophy, the contribution from the k3 range is negligible 
compared with that from the enstrophy cascade (the integral of k2 times (5.1)). Then 
for the total enstrophy D(t ) ,  

D(t)  z 3 x2-iCyt ( In - y . 
~ ( t )  - ~3 (In 2y ( t - t 0 ) - 2 ,  

(5.6) 

If we neglect the time dependence of the logarithmic correction in (5.6) we find 

(5.7) 
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where to is a virtual origin of time. This allows us to determine q.  Then, by evaluating 
the total kinetic energy tP and matching the k3 and k-,  ranges of the spectrum at 
k = k,, we finally obtain 

k, - G (In 2y V-l(t-t0)-l, (5.8) 

Thus Batchelor’s self-similar two-dimensional energy spectrum is derived (modulo 
some logarithmic corrections) from an analysis of nonlocal expansions in the EDQNM 
theory. 

We next turn to the evolution of the passive-scalar spectrum initially peaked at 
k,, considering a decaying scalar spectrum of the (approximate) form 

( 5 . 1 0 ~ )  

(5.10b) 

where (5.10b) is just (3.15). For simplicity, we take the initial ‘scalar integral scale’ 
(k,(O))-I to be - (k1(O))-l .  But it is not clear that k,(t) and k I ( t )  remain of the same 
order as time proceeds: the strong dynamical constraint that determines the large 
scales of the velocity does not exist for the scalar. In particular, the k3 scalar transfer 
at k +  0 may not be strong enough to overwhelm an initial ks (s < 3) scalar spectrum. 
However, the precise infrared behaviour of the scalar spectrum and location of k,(t) 
are not needed to determine the time decay of the scalar fluctuations. Equation 
(5.10) yields 

(5.11) 

with a correction which can be shown to be negligible if the Reynolds number is high. 
(This is the same condition that allowed us to neglect the infrared contribution of 
the energy spectrum to the enstrophy.) Then (5.11) may be rewritten as 

1 d(02) A 1 dD 
(02) dt A’D dt a 

(5.12) 

Consequently (5.13) 

As remarked in $3, it  seems plausible that A‘ = A,  which would yield a t-2 decay law 
for (P). 

( 8 2 )  = const x @IA‘ ot (t - to) 

6. Correlation of scalar with velocity field 
We remarked earlier that the correlation of scalar and vorticity is an inviscid 

constant of motion, and this implies that an initially perfect correlation is preserved 
in time if Pr = 1,  and the forcing of the scalar and vorticity are the same. Here we 
examine the closure’sprescription for correlation, c (k )  = (6 (k )  f (  -k)). Our equations 
for c ( k )  are quite similar to  those proposed by Holloway & Kristmannsson (1984), 
whose point of view - with respect to theory - is closer to the Langevin equations 
proposed by Leith (1971). The equations for the set (E,  E,, c )  are (A l ) ,  (A 2) and (A 3) 
of the Appendix. Our derivation here parallels the original derivation of the 
direct-interaction approximation by Kraichnan (1959). 

For these equations, we may verify inviscid equipartitioning constants of motion 
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jdk8,  j d k U ( k ) ,  f d k U ( k ) / k 2  and j d k c ( k ) .  (We remind the reader that U ( k )  is 
here the modal enstrophy spectrum.) The equipartition solution is (c(k)  = p U ( k ) ,  
U ( k )  = k 2 / ( A  + B k 2 ) ) ,  8 = C U ( k ) / k  where ( p ,  A ,  B ,  C) are constants. 

We notice that (A 3) is a linear equation in c ;  given E ( k )  we may solve it and then 
substitute that solution into (A 3), where the effects of c ( k )  serve as an additional 
inhomogeneity on 8. The special case Fc(k) = F&k)/p,  Pr = 1 may be readily solved 
in the steady state. In this case 

Substituting (6.1) into the steady-state form of (A 3) we find - after using properties 

~ ( k )  = p U ( k ) .  (6.1) 

of B ( k , p ,  q )  and p ( k ,  P, q )  

Kk2[8 (k )  -p2 U( k ) ]  = k2( 1 -p2)  P&k) + J(  U ,  O ( k )  - p 2  U) .  (6.2) 

Here J is the modal form of the scalar transfer as defined by (3.6): 

1 kE E ,  
27ck ’( 7c ’ 2 a k ) .  

J = - T  -- (6.3) 

Thus the field E‘,(k) - k2E(k)  is an uncorrelated scalar with a forcing k2( 1 -p2)  F ( k ) .  
If we denote by 8 the solution of (6.2) with unit forcing, we may readily work out 
the normalized correlation coefficient x ( k )  = c (k )  [ U ( k )  @(k) ]+ .  Assuming 
P ( k )  - S(k-k,) ,  we find, for example, 

(6-4) x ( k )  = p U ( k )  [ U ( k )  ( k ~ ( l - p 2 ) Q ( k ) + p 2 U ( k ) ] - ~ .  

Note that where 8 ( k )  4 U ( k ) ,  x (k )+  1. Typically this can occur at small k ,  where 
8 ( k )  = 1 (thermal-equilibrium form), if U ( k )  is inverse-cascading. 

Equation (6.2) derives from two simple facts. First, under the conditions of its 
derivation, any linear combination a6 + PI3 satisfies the linear passive-scalar equation, 
since both 6 and 8 do separately. Secondly, (6.1) is valid, according to (A 3). Note 
that this is simply a generalization of the thermal-equilibrium relation into the forced 
dissipative domain. Then it follows that there is a linear combination of (6,8) (i.e. 
8) uncorrelated with 6. That such thermal-equilibrium relationships (6.1) may have 
a validity in steady-state forced dissipative conditions has been frequently stressed 
by Holloway (1985). 

There remains for us to discuss the rapidity with which an injected correlation 
between 6 and 6 disappears if there is no injection mechanism for c (Fc(k )  = 0). The 
linearity of (A 3) implies that this is the same problem as the relaxation of c(k,  t )  back 
to  its (forced) equilibrium if initially disturbed. The key problem is then to examine 
the eigenmode of ( K  + v) k2 - X ,  where X is a matrix representation of the right-hand 
side of (A 3). We anticipate that all eigenvalues A have negative real parts. The 
largest AL then forms the basis for discussing the relaxation of correlations. 

These eigenvalues are readily computed (at least numerically) provided we make 
an adiabatic evaluation of the relaxation effects in (A 16), putting transient factors 
1 -exp (-Z,uLt) = 1 .  To fix ideas, we consider the case Pr = 1, with the following 
specification of forcing and dissipation : 

v ( k )  k2 = K(k) k2 = - ak,  + b ( k -  k,)!. 
k + k ,  

In (6.6) our notation is that (x)+ = x (z > 0) and = 0 (x < 0). The presence of a 
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FIGURE 6. Steady-state kinetic-energy spectrum-E(k) with forcing and dissipation as specified by 
(6.5) and (6.6). The k4 range at small k is a balance between the input term (of (5.3a)),  and v(k)  
E(k) ,  with v (k )  given by (6.6). 

Rayleigh friction (a + 0) in (6.6) arrests the inverse cascade near k = 0. The 
calculations reported here all have a = 20, b = 6 x 10-8(kT/(kT-ko))4, k, = 0.048, 
k, = 256, k, = 225, k, = 130 and Fo = 8. The steady-state solution for E(k) is 
shown in figure 6. We may distinguish several spectral regions: (1) a k4 'eddy-viscous' 
range, which follows from the steady-state k+O asymptotics if we use (6.6) ; (2) a k-0 
range extending over 3 < k < 130; (3) an abbreviated k+ range extending over 
130 < k < 225; and, finally, (4) a dissipation range (225 < k < 256). To have some 
measure on the role of nonlinearity, it is convenient to introduce an energy-scale 
Reynolds number Re by defining an 'effective' viscosity, 

JOm dk v(k)  k2E(k) 

= Jdkk2E(k) ' 

vi J'." ( W k )  E(k)  
Re = 

JOm dkE(k)  * 

An appropriate rate to which the eigenvalues may be compared is 
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FIGURE 7. Normalized correlation coefficient r(k) as given by (6.4), for correlation forcingp(k) F(k); 
P(k) is given by (6.5) and ~ ( k )  by (6.6). Curves for p = 0.125, 0.25, 0.5 are shown. Arrow 
indicates injection wavenumber. 

For our present calculation Re = 166, which gives an extensive k-0 range, as may be 
seen from figure 6. This value of Re is similar to estimates for the planetary scales 
of the atmosphere. For E ( k )  as given by figure 6 we find 

(6.10) 

Thus correlation will disappear rather rapidly in forced dissipative system if it is not 
continuously injected. 

Figure 7 shows steady-state x ( k ) ,  the normalized correlation coefficient for values 
of p = (0,0.125,0.25,0.5). We note that x ( k )  increases above its injection value p as 
k decreases, until the eddy-viscous range is reached, after which it rapidly decreases. 
The scalar spectra E,(k) are shown in figure 8 for the same range of p. The case p = 0 
has an extensive equipartition E,(k) - k range that follows the eddy-diffusive range 
(3 < k < ko) .  For the remaining curves E,(k) - ki in the above range. The E,(k) - k-' 
range (beyond k,) for these calculations is not very well defined. The scalar 
'bump' - discussed at the end of 54 - contaminates a good part of this range, making 
the E,(k) too shallow. 

7. Conclusions and perspectives 
This paper has examined the (second-order) statistics of the fluctuations of a 

passive scalar convected by two-dimensional turbulence. Using the tools of the 
EDQNM we have discussed four ranges for the scalar variance : (1 ) a k-l inertial- 
convective range in the enstrophy cascade; (2) a k-' viscous-convective range in the 
enstrophy-dissipation range (at high Prandtl numbers) ; and (3) a k-f inertial- 
convective range in the inverse-energy-cascade range (in the forced case only). In the 
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FIQURE 8. Scalar energy spectra E&) for p = 0, 0.25, 0.5, 1 and forcing and dissipation as in 
figure 6. 

latter, the scalar cascades toward larger wavenumbers. We have discussed this point 
analytically and numerically. 

In order to compute an eddy diffusivity we have studied also the transfer due to 
very elongated triads of wavenumbers : in the inertial-convective range the dynamics 
of the scalar is the same as the vorticity. But the eddy diffusivity is always positive. 
For the energy the eddy viscosity may be negative if the lowest available scale is not 
zero. This implies, for the case of a velocity and scalar forcing, an infrared 
equipartitioning spectrum for the scalar. We also examined the case of freely evolving 
turbulence; a non-local analysis of the statistical theory shows that an arbitrary 
energy spectrum evolves toward the self-similar shape predicted by Batchelor (1969) 
with an integral scale increasing proportionally to the time. The scalar fluctuations 
then decay as tP2,  as does the enstrophy (if one accepts that the enstrophy fluctuations 
behave like a passive scalar in small scales). Finally, we have examined the 
generalizations needed to study the case in which correlations exist between the 
vorticity and scalar fields. For statistically steady flows maintained by random 
stirring at  a particular wavenumber, the scalar spectrum for perfect vorticity 
correlation must of course be - ki in the inverse-cascade range. Such a spectrum has 
been occasionally mentioned in the oceanographic context, and we see here via closure 
how it may be systematically generalized to the case in which the correlation is 
imperfect. If not maintained by steady injection such correlations quickly decay. The 
reasons, as pointed out by Holloway & Kristmannsson (1984), lie in the fact that 
the vorticity is more rigorously constrained by its double conservation law than the 
scalar, which has only one. 

Several issues are left unanswered. First, on the purely technical level, some of the 
uncertainties concerning the behaviour of the scalar integral scale could be clarified 

4 FLM 161 
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by numerical calculations of the spectral equations (3.4)-(3.7). Considering the 
fragility of closure theory, certain of the above results should also be examined using 
direct numerical simulations of the Navier-Stokes equations. Indeed, progress here 
has been made through the calculations of Holloway & Kristmannsson (1984); 
however, we should note that much higher resolution is needed to settle issues 
pertaining to the integral scales of the flow. I n  this regard, a particularly sensitive 
assumption made to  deduce the ( O ( t ) 2 )  - tP2 is that the vorticity a t  very small scales 
is analogous to a passive scalar (see (3.17)). 

Throughout this paper, we have traced several analogies between the scalar and 
vorticity fields, as indeed have several previous authors. We should stress, however - as 
have Holloway & Kristmannsson (1984) - that dynamically these fields behave 
completely differently, except in the special circumstances that at Pr = 1 they have 
the same initial data (in the spin-down problem) or have the same forcing function 
(in stationarily maintained flow). Indeed, we have seen in $6 that any initial 
correlation between them rapidly decays, if not continuously injected. 

On the other hand, these dynamical differences do not necessarily vitiate the 
small-scale analogy between these quantities, if their spectra decrease rapidly enough. 
The latter is simply a necessary condition for small-scale statistical independence of 
large-scale (strain), as postulated by Kraichnan (1975) in making this proposal. We 
should note however that such statistical independence has recently been questioned 
by Babiano et al. (1984). 

A final comment seems appropriate concerning the question of whether the closure 
theory studied here is a secure basis for sensible investigations of two-dimensional 
turbulence. Our position here has been that a knowledge of the consequences of the 
closure is useful first-order information. The closure asserts a near-Gaussianity for 
the flow's dynamics, and the consequences of such assumptions may be useful if for 
no other reason than to form an assessable basis to  compare reality. On a simpler 
plane, this is why skewnesses and kurtosis are useful in discussing experimental flows. 
Recent numerical studies have suggested that purely two-dimensional flows - in 
certain circumstances - tend toward a system of isolated vortices, whose dynamics 
are not encompassed by the present methods (Basdevant & Sadourny 1983; Herring 
& McWilliams, 1985). The most acute departure of the real dynamics from that 
described here occurs for spin-down problems at long times, after the enstrophy 
dissipation maximum is long past. On the other hand, simulation results for 
stationary randomly forced two-dimensional flows are in much better accord with 
theory. Hence our results may still have a degree of realism for stationary turbulence. 

Appendix 
The equations for the modal enstrophy and temperature variance spectra, defined 

c ( k , t )  = ( C ( - k ) m ) ,  

are (in the direct-interaction approximation) ; 
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(i ;+ K k 2 )  @(k, t )  

In (A 1)-(A 3) we use the abbreviated notation 

rt  

with 

The EDQNM used here may be considered an abridgement of the DIA in which the 
ensemble-mean vorticity and scalar Green functions Go and Gc in (A 1)-(A 3) are 
approximated as 

Ge(k, t, 8) = exp (-p'(t-~)), (A 11) 

G & k , t , 4  = exp(--,u(t--s)), (A 12) 

(A 13) 
k 

with (p,p',p") = ( A ,  A', A") { 5 0 dpp2E@)}' + (v, K ,  v) kZ. 

4-2 



94 

The EDQNM further takes the two-time correlations as 

M .  Lesieur and J .  Herring 

U(k, t ,  8) = U k ,  t ,  t )  exp ( -p (k )  ( t - s ) ) ,  

@(k, t ,  s) = 8 ( k ,  t ,  t )  exp (-p'(k) ( t - 8 ) ) .  

(A 14) 

(A 15) 

The forcing functions Fo and Fc assume white-noise forcing for (fo, fc). 
The EDQNM incorporates invariance to random Galilean transformation by using 

both a Markovianization of two-time quantities (A 14) and (A 15) and by using a 
Lagrangian-like Green function (A 11 ) and (A 12), instead of Eulerian Green functions 
as in the DIA. We do not record the latter here. 

With (A 11)-(A 15) the time integrals (A 6) in (A 1)-(A 3) may be performed, with 
the result that the B(k ,p ,  q)-factors are modulated by factors like 

An alternative derivation of spectral-closure equations proceeds via an eddy- 
damping Ansatz, which represents the damping of triple cumulants caused by effects 
of fourth cumulants (for a more detailed discussion see e.g. Larcheveque & Lesieur 
1981). As applied to the passive-scalar problems, this method gives a more general 
7kPq, which contains the additional parameter A" (defined by (A 13)). For the 
uncorrelated case ( c (k )  = 0), the EDQNM procedure results in parameterizing (in 
(A 2)) eo(k) and 8 ( k )  with (A 15), and 8 ( k )  (as used in (A 2) only) with 

(A 17) O(k) = ~ ( k ,  t)* exp ( -p"(k) (t--8)).  

We finally note that ~ ' ( k ,  p, q)  as used in $54 and 5 is defined by 
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